Abgasreinigungsanlagen verursachen Partikelemissionen mit
Ob Starkregen oder extreme Hitze – solche Wetterereignisse nehmen weltweit zu. Ein Forschungsteam des Karlsruher Instituts für Technologie (KIT) vermutet, dass sie von ultrafeinen Partikeln in der Atmosphäre mit verursacht werden und macht unter anderem Abgasreinigungsanlagen neuster Technologie dafür verantwortlich.
Quelle: Marek Pivwnicki, Unsplash
Kamine beim Hafen von Danzig. (Symbolbild)
In der Klimaforschung führte man vermehrte Vorkommen von Wetterextremen bislang hauptsächlich auf das zunehmende Kohlendioxid und die damit verbundene höhere Wasserdampfkapazität der sich erwärmenden Atmosphäre zurück, wie Wolfgang Junkermann erklärt. Der Wissenschaftler ist für das Institut für Meteorologie und Klimaforschung – Atmosphärische Umweltforschung (IMK-IFU) tätig, respektive den Campus Alpin des KIT in Garmisch-Partenkirchen. Weil Kohlendioxid aber aufgrund seiner langen Lebensdauer räumlich relativ gleichmässig verteilt sei, liesse sich damit die Variabilität in der Verteilung und im Auftreten von Extremwetterereignissen ohne Einbeziehung des Wasserkreislaufs nicht befriedigend erklären, so Junkermann weiter.
Ultrafeine Partikel von
wenigen Nanometern bis zu 100 Nanometern aus der Verbrennung fossiler
Kraftstoffe können signifikant zu den Extremwetterereignissen beitragen, indem sie als
Kondensationskerne regional und kurzfristig auf die Wolkenphysik einwirken. So argumentieren Junkermann und seine Kollegen.
„Mit üblichen Modellen für die Wolkenbildung können wir zeigen, dass sich durch die Zunahme von ultrafeinen Partikeln auch mehr und kleinere Tropfen bilden“, sagt Junkermann. Dadurch verweile Wasser viel länger in der Atmosphäre, der Regen werde zunächst unterdrückt und es entstehe ein zusätzliches Energiereservoir in der mittleren Troposphäre, das extreme Niederschläge begünstigt. Das kann dann hunderte Kilometer entfernt passieren. Wie der Forscher ausführt, kann eine ungleichmässige Verteilung der Nanopartikel-Verschmutzung zur Erklärung der grossen regionalen Unterschiede bei Extremwetterereignissen beitragen.
Mehr Nanopartikel, weniger regelmässige Regenfälle
Weil sich nur unter sehr seltenen Bedingungen beobachten lässt, wie ultrafeine Partikel die Wolkenbildung beeinflussen, analysierten die Forscher Daten zu Menge und Verteilung von Ultrafeinstaub in der Erdatmosphäre sowie zu Veränderungen im Wasserkreislauf. Dabei stellten sie fest, dass in vielen Gebieten der Erde ein Anstieg der Partikelmenge mit regional veränderten Niederschlagsmustern korreliert: „Über dem Mittelmeer ist die Partikelkonzentration beispielsweise seit den 1970er-Jahren um den Faktor 25 angestiegen“, sagt Junkermann. Gleichzeitig hat es laut dem Wissenschaftler starke Veränderungen bei den Niederschlägen gegeben, „weg von regelmässigen Regenfällen und hin zu Dürren und stärkeren Extremereignissen“.
Ähnliche Muster können laut Junkermann in Australien und in der Mongolei beobachtet werden. Diese Erkenntnis gründet auf den Daten umfangreicher Messreihen mit Kleinflugzeugen, mit denen die Forscher über 20 Jahre einen der grössten Datensätze dieser Art zusammengetragen haben. Er umfasst Gebiete in Asien, Mittelamerika, Europa und Australien mit historisch rekonstruierbaren Emissionen und ausführlich dokumentierten regionalen Klimaänderungen.
Anstieg bei Partikelemissionen wegen neuster Abgastechnologie?
Mit den nun veröffentlichten Daten können die Forscher belegen, dass Partikelemissionen seit den 1970er-Jahren extrem angestiegen sind, für letztere liegen ebenfalls Daten vor. „Punktuell konnten wir eine Belastung von bis zu 150‘000 Teilchen pro Kubikzentimeter nachweisen, wo 40 Jahre zuvor nur etwa tausend Teilchen nachweisbar waren“, sagt Junkermann. „Die extremen Konzentrationen konnten wir auf Kraftwerke, Raffinerien oder den Schifffahrtsverkehr zurückführen, oft und besonders auch auf Grossfeuerungsanlagen mit neuester Abgas-Technologie.“
Junkermann verweist dazu auf das seit den 1990er-Jahren eingesetzte Ammoniak, mit verhindert wird, dass sich in Abgasen von Industrieanlagen Stickoxidee (NOx) bilden. Mit ihren Daten können er und seine Kollegen nun nachweisen, dass dabei besonders viele Nanoteilchen in die Atmosphäre entweichen.
Junkermann und seine Kollegen raten, den Anstieg von Ultrafeinstaub in der Atmosphäre in den Szenarien der Klimaforschung stärker zu berücksichtigen: In den bisherigen Berechnungen würden standardmässig Staubwerte aus Emissionsszenarien vom Anfang des Jahrhunderts verwendet. Wie Junkermann erklärt, liesse sich die Modellierung des Wasserkreislaufs, der Niederschlagsänderungen und der Extremwetterereignisse mit aktuelleren Daten „vermutlich wesentlich“ verbessern. (mai/mgt)